51 research outputs found

    Metabolomics approach for determining growth-specific metabolites based on Fourier transform ion cyclotron resonance mass spectrometry

    Get PDF
    Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS) is the best MS technology for obtaining exact mass measurements owing to its great resolution and accuracy, and several outstanding FT-ICR/MS-based metabolomics approaches have been reported. A reliable annotation scheme is needed to deal with direct-infusion FT-ICR/MS metabolic profiling. Correlation analyses can help us not only uncover relations between the ions but also annotate the ions originated from identical metabolites (metabolite derivative ions). In the present study, we propose a procedure for metabolite annotation on direct-infusion FT-ICR/MS by taking into consideration the classification of metabolite-derived ions using correlation analyses. Integrated analysis based on information of isotope relations, fragmentation patterns by MS/MS analysis, co-occurring metabolites, and database searches (KNApSAcK and KEGG) can make it possible to annotate ions as metabolites and estimate cellular conditions based on metabolite composition. A total of 220 detected ions were classified into 174 metabolite derivative groups and 72 ions were assigned to candidate metabolites in the present work. Finally, metabolic profiling has been able to distinguish between the growth stages with the aid of PCA. The constructed model using PLS regression for OD600 values as a function of metabolic profiles is very useful for identifying to what degree the ions contribute to the growth stages. Ten phospholipids which largely influence the constructed model are highly abundant in the cells. Our analyses reveal that global modification of those phospholipids occurs as E. coli enters the stationary phase. Thus, the integrated approach involving correlation analyses, metabolic profiling, and database searching is efficient for high-throughput metabolomics

    Activation of Sirt1 by Resveratrol Inhibits TNF-α Induced Inflammation in Fibroblasts

    Get PDF
    Inflammation is one of main mechanisms of autoimmune disorders and a common feature of most diseases. Appropriate suppression of inflammation is a key resolution to treat the diseases. Sirtuin1 (Sirt1) has been shown to play a role in regulation of inflammation. Resveratrol, a potent Sirt1 activator, has anti-inflammation property. However, the detailed mechanism is not fully understood. In this study, we investigated the anti-inflammation role of Sirt1 in NIH/3T3 fibroblast cell line. Upregulation of matrix metalloproteinases 9 (MMP-9), interleukin-1beta (IL-1β), IL-6 and inducible nitric oxide synthase (iNOS) were induced by tumor necrosis factor alpha (TNF-α) in 3T3 cells and resveratrol suppressed overexpression of these pro-inflammatory molecules in a dose-dependent manner. Knockdown of Sirt1 by RNA interference caused 3T3 cells susceptible to TNF-α stimulation and diminished anti-inflammatory effect of resveratrol. We also explored potential anti-inflammatory mechanisms of resveratrol. Resveratrol reduced NF-κB subunit RelA/p65 acetylation, which is notably Sirt1 dependent. Resveratrol also attenuated phosphorylation of mammalian target of rapamycin (mTOR) and S6 ribosomal protein (S6RP) while ameliorating inflammation. Our data demonstrate that resveratrol inhibits TNF-α-induced inflammation via Sirt1. It suggests that Sirt1 is an efficient target for regulation of inflammation. This study provides insight on treatment of inflammation-related diseases

    Charting the NF-κB Pathway Interactome Map

    Get PDF
    Inflammation is part of a complex physiological response to harmful stimuli and pathogenic stress. The five components of the Nuclear Factor κB (NF-κB) family are prominent mediators of inflammation, acting as key transcriptional regulators of hundreds of genes. Several signaling pathways activated by diverse stimuli converge on NF-κB activation, resulting in a regulatory system characterized by high complexity. It is increasingly recognized that the number of components that impinges upon phenotypic outcomes of signal transduction pathways may be higher than those taken into consideration from canonical pathway representations. Scope of the present analysis is to provide a wider, systemic picture of the NF-κB signaling system. Data from different sources such as literature, functional enrichment web resources, protein-protein interaction and pathway databases have been gathered, curated, integrated and analyzed in order to reconstruct a single, comprehensive picture of the proteins that interact with, and participate to the NF-κB activation system. Such a reconstruction shows that the NF-κB interactome is substantially different in quantity and quality of components with respect to canonical representations. The analysis highlights that several neglected but topologically central proteins may play a role in the activation of NF-κB mediated responses. Moreover the interactome structure fits with the characteristics of a bow tie architecture. This interactome is intended as an open network resource available for further development, refinement and analysis

    Nasal inflammation and its response to local glucocorticoid regular treatment in patients with persistent non-allergic rhinitis: a pilot study

    Get PDF
    Background The pathogenesis of non-allergic rhinitis (NAR) is still largely unknown. Furthermore, it is unclear whether there is a correlation between the effect of nasal glucocorticoids on nasal inflammation and on nasal symptoms and quality of life. Methods In this pilot study we recruited 12 healthy subjects and 24 patients with recently diagnosed persistent NAR [12 untreated and 12 under regular treatment with nasal fluticasone furoate (two sprays of 27.5 µg each in each nostril once daily, total daily dose=110 µg) for at least 20 days]. Each subject filled a mini rhinoconjunctivitis quality of life questionnaire (mini RQLQ). Nasal scrapings were obtained from each subject and used to prepare slides for Diff-Quik and immunocytochemical staining for inflammatory and epithelial cells count, MUC5AC expression and the general pro-inflammatory transcription factor nuclear factor B (NF-B) activation. Results The nasal score of the mini RQLQ, the number of nasal inflammatory cells (neutrophils, eosinophils) and the number of goblet cells are significantly higher in untreated patients with persistent NAR compared with control subjects and treated NAR patients. The percentage of MUC5AC+ nasal epithelial cells is significantly increased in untreated patients with persistent NAR compared with the control subjects (41.8±6.4 vs 22.3±4.8, respectively; p=0.0403) without significant differences between control subjects and patients with persistent NAR on regular fluticasone furoate treatment with nasal glucocorticoids (33.9±5.0%; p=0.0604) nor between the 2 groups of persistent NAR subjects (p=0.3260). The number of cytosolic and/or nuclear p65+ nasal epithelial and inflammatory cells was not significantly different between the three groups. Conclusions Patients with persistent untreated NAR, compared with normal control subjects and patients with persistent NAR under regular treatment with nasal fluticasone furoate glucocorticoids by at least 20 days, have more nasal symptoms, worst quality of life and an increased number of nasal inflammatory cells (neutrophils, eosinophils), goblet cells and MUC5AC+ nasal epithelial cells. This nasal inflammation seems unrelated to NF-κB activation
    • …
    corecore